Warm tip: This article is reproduced from stackoverflow.com, please click
keras loss-function python tensorflow

Keras backend function seems to be working incorrectly

发布于 2020-03-27 10:16:44

I am trying to implement a custom loss function in Keras.

To start it off, I wanted to be sure the previous loss function can be called from my custom function. And this is where the weird stuff begins:

model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=['accuracy'])

works as expected.

Now the implementation of "sparse_categorical_crossentropy" in keras.losses is as follows:

def sparse_categorical_crossentropy(y_true, y_pred):
    return K.sparse_categorical_crossentropy(y_true, y_pred)

I concluded that passing K.sparse_categorical_crossentropy directly should also work. However, it throws expected activation_6 to have shape (4,) but got array with shape (1,).

Also, defining a custom loss function like this:

def custom_loss(y_true, y_pred):
    return keras.losses.sparse_categorical_crossentropy(y_true, y_pred)

does not work. During training is reduces the loss (which seems correct) but the accuracy does not improve (but it does, when using the non-custom loss function)

I am not sure what is happening, neither do I know how to debug it properly. Any help would be highly appreciated.

Questioner
Johannes
Viewed
197
Anubhav Singh 2019-07-03 21:42

I tested what you are saying on my code and yes, you are right. I was initially getting the same error as you were getting, but once I changed the metrics parameter from accuracy to sparse_categorical_accuracy, I started getting higher accuracy.

Here, one important thing to note is when we tell keras to use accuracy as metrics, keras uses the default accuracy which is categorical_accuracy. So, if we want to implement our own custom loss function, then we have to set metrics parameter accordingly.

Read about available metrics function in keras from here.

Case 1:

def sparse_categorical_crossentropy(y_true, y_pred):
    return K.sparse_categorical_crossentropy(y_true, y_pred)

model.compile(optimizer='adam',
              loss=sparse_categorical_crossentropy,
              metrics=['accuracy'])

output:

ValueError: Error when checking target: expected dense_71 to have shape (10,) but got array with shape (1,)

Case 2:

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

output:

Epoch 1/2
60000/60000 [==============================] - 2s 38us/step - loss: 0.4714 - acc: 0.8668
Epoch 2/2
60000/60000 [==============================] - 1s 22us/step - loss: 0.2227 - acc: 0.9362
10000/10000 [==============================] - 1s 94us/step

Case 3:

def custom_sparse_categorical_crossentropy(y_true, y_pred):
    return K.sparse_categorical_crossentropy(y_true, y_pred)

model.compile(optimizer='adam',             
              loss=custom_sparse_categorical_crossentropy, 
              metrics=['accuracy'])

output:

Epoch 1/2
60000/60000 [==============================] - 2s 41us/step - loss: 0.4558 - acc: 0.1042
Epoch 2/2
60000/60000 [==============================] - 1s 22us/step - loss: 0.2164 - acc: 0.0997
10000/10000 [==============================] - 1s 89us/step

Case 4:

def custom_sparse_categorical_crossentropy(y_true, y_pred):
    return K.sparse_categorical_crossentropy(y_true, y_pred)

model.compile(optimizer='adam',
              loss=custom_sparse_categorical_crossentropy,
              metrics=['sparse_categorical_accuracy'])

output:

Epoch 1/2
60000/60000 [==============================] - 2s 40us/step - loss: 0.4736 - sparse_categorical_accuracy: 0.8673
Epoch 2/2
60000/60000 [==============================] - 1s 23us/step - loss: 0.2222 - sparse_categorical_accuracy: 0.9372
10000/10000 [==============================] - 1s 85us/step

Full Code:

from __future__ import absolute_import, division, print_function
import tensorflow as tf
import keras.backend as K


mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(100, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.10),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

def custom_sparse_categorical_crossentropy(y_true, y_pred):
    return K.sparse_categorical_crossentropy(y_true, y_pred)

#def sparse_categorical_accuracy(y_true, y_pred):
#    # reshape in case it's in shape (num_samples, 1) instead of (num_samples,)
#    if K.ndim(y_true) == K.ndim(y_pred):
#        y_true = K.squeeze(y_true, -1)
#    # convert dense predictions to labels
#    y_pred_labels = K.argmax(y_pred, axis=-1)
#    y_pred_labels = K.cast(y_pred_labels, K.floatx())
#    return K.cast(K.equal(y_true, y_pred_labels), K.floatx())

model.compile(optimizer='adam',
          loss=custom_sparse_categorical_crossentropy,
         metrics=['sparse_categorical_accuracy'])

history = model.fit(x_train, y_train, epochs=2, batch_size=200)
model.evaluate(x_test, y_test)

Check out the implementation of sparse_categorical_accuracy from here and sparse_categorical_crossentropy from here.